KHOA KHOA HỌC

 Tập thể cán bộ Khoa

 

 

Chia tay thầy/cô về hưu 

 

 

Lễ tốt nghiệp

 

 

Thi nấu ăn ngày 8/3/2014

 

 

Thi hát xuân Giáp Ngọ 

 

Thống kê

Số lần xem:
Đang xem
Toàn hệ thống:
Trong vòng 1 giờ qua

 

 

Lịch bù Nhóm 2 và Nhóm 3 vào thứ 5, ngày 21/8/2014:

Tiết 123: Nhóm 3. 

Tiết 456: Nhóm 2

 

CHƯƠNG 5: CHUỖI

I. XÉT SỰ HỘI TỤ, PHÂN KỲ CỦA MỘT CHUỖI SÔ:

Tổng quát hơn, sau đây là phương pháp xét sự hội tụ phân kỳ của một chuỗi số.

1. Nhắc lại lớp 11:

Nếu $displaystylelimlimits_{n o +infty} u_n$ ra hai kết quả khác nhau trong hai trường hợp $n$ chẵn và $n$ lẻ thì ta thu được khẳng định $displaystylelimlimits_{n o +infty} u_n$ không tồn tại.

2. Tính chất cơ bản của chuỗi số:

Nếu chuỗi số $displaystylesum_{n=1}^{+infty}{u_n}$ (âm, dương tùy ý) có (1) $limlimits_{} {u_n} e 0$ HOẶC (2) $limlimits_{} {u_n}$ không tồn tại thì chuỗi số $displaystylesum_{n=1}^{+infty}{u_n}$ phân kỳ. 

3. Xử lý chuỗi dan dấu:

Nếu là chuỗi đan dấu thì ta ưu tiên sử dụng tiêu chuẩn Leibniz. Khi nào $u_n$ không thỏa điều kiện của tiêu chuẩn Leibniz ($u_n$ tăng và $limlimits_{}u_n =0$) thì ta nghĩ ngay đến việc sử dụng (ý thứ (2)) của tính chất ở mục 2.

4. Chuỗi có dấu tùy ý:

Nếu gặp một chuỗi số tùy ý (không đan dấu, nhưng có thể âm, dương tùy ý) mà nhanh ý thấy được $limlimits_{} {u_n} e 0$ thì ta kết luận chuỗi phân kỳ. 

5. Chuỗi số dương: 

Nếu chắc chắn chuỗi số $displaystylesum_{n=1}^{+infty}{u_n}$ là chuỗi số dương thì sử dụng

  • Tiêu chuẩn so sánh: nếu so sánh được $u_n$ với $displaystyle frac{1}{n^alpha}$
  • Tiêu chuẩn D'lambert: nếu $u_n$ có chứa $n!$ HOẶC có cả $n!$ và $an+b,an^2+bn+c,sqrt{an+b},...$
  • Tiêu chuẩn Cauchy: nếu $u_n$ có chứa $n$ trên phần mũ.

 

07/01/2014

Trần Bảo Ngọc

 

 

 

Số lần xem trang : :11208
Nhập ngày : 07-01-2014
Điều chỉnh lần cuối :14-08-2014

Bỗ trợ kiến thức

Ôn luyện môn Toán cao cấp B2 - Thầy Trần Bảo Ngọc(20-04-2014)

Trang liên kết

 

Bách khoa toàn thư  

 

 

Hỗ trợ tự học online 

Học anh văn online

 


 

 

Phòng đào tạo - ĐHNL