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Chapter 1

ERRORS THEORY

When measuring a quantity we must use instruments and our senses. Therefore, we cannot
determine the exact value of the quantity to be measured. On making different measure-
ments of a particular quantity we often obtain different values; it means that we have errors
on this quantity.
There are different types of errors and each type of error required different calculation. For
example, a quantity to be measured, called X, after several measurements have been made
and then analyzed, the results must be wriiten as follows:

X = X ±∆X (1.1)

Where X is the quantity to be measured, X is the avarage value of X, and ∆X is the
average absolute error value on measuring X.

1.1 The average value of quantity X

It is denoted by X and given by

X =

n∑
i=1

Xi

n
(1.2)

where n is the number of measurements made on X, and Xi is the value of X obtained in
the ith measurement.

1.2 The average absolute error

It is denoted by ∆X. This quantity gives the uncertainty of the value to be obtained of X
and is given by

∆X = ∆Xrandom + ∆X instrument (1.3)

where ∆Xrandom is the average error due to the randomness and ∆X instrument is that
due to instrumentation. This quantity gives the uncertainty on measuring X.

3



CHAPTER 1. ERRORS THEORY 4

1.3 The average error due to randomness

It is denoted by ∆Xrandom. This type of error is due to the inherently random nature of
measuring directly a particular quantity many times. It depends on several factors: the
quantity to be measured, the accuracy of the instruments, human’s limited capability of
reading, and external environment. As a result, each measurement of the same quantity
gives a little bit different values.
∆Xrandom is given by

∆Xrandom =

n∑
i=1

∣∣Xi −X
∣∣

n
(1.4)

1.4 The instrumental error

It is denoted by ∆X instrument. This type of error is due to the lack of accuracy of the
instruments.
It is calculated as follows:

• Reading the value on using the instrument. For example, on the micrometer, the
lowest division is 0.01mm, thus ∆X instrument = 0.01mm.

• Getting or 1
2

of value of the lowest division. As a result, for example, on the microm-
eter, the lowest division is 0.01mm, thus ∆X instrument = 0.01mm/2 = 0.005mm.

• For electrical instruments such as ammeter, voltmeter, etc., we have by convention
∆X instrument = 1%Xmax. Where Xmax is the lowest division of the instrument used.

Noting that, in these experiments of this section we only get the value of ∆X instrument

∆X instrument = the lowest division (1.5)

Consequently, the instrument should be chosen so that the instrument’s measuring scale
is at the nearest to the value to be measured. The instrumental error is then small, giving
the smaller value of and better accuracy of the measurement. Combining equations (1.2),
(1.3), (1.4), (1.5) we obtain the final result (1.1).

1.5 The average relative error

It is denoted by ε̄ and given by

ε =
∆X

X
(1.6)

The average relative error is used to evaluate the accuracy of the measurement. Therefore,
to evaluate the accuracy of the measurement we need to find both the average relative
error and the average absolute error.
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1.6 Formulae to find errors indirectly

This is shown on the table below

Table 1.1: The formulae to calculate errors

X(a,b,c) ∆X ε = ∆X
X

a+ b+ c ∆a+ ∆b+ ∆c ∆a+∆b+∆c
a+b+c

a− b ∆a+ ∆b ∆a+∆b
a−b

a× b a.∆a+ b.∆b ∆a
a

+ ∆b
b

an n(a)n−1∆a n∆a
a

1.7 Writing the results and rounding the numbers

The value of the quantity to be measured is written in the form X = X + ∆X, obeying
the following rules:

1. The value of X is written in the standardized form: X = a× 10n with 1 < a < 10.

2. The value of ∆X is normally written with a non-zero digit and in accordance with
the power value n of X.

3. Discard the unreliable digits in X (the digit whose order is smaller than the power
value n of X).

Example: We have raw values: X = 297.159 and ∆X = 0.2765, now follow the steps

1. Standardixing X : X = 2.97159× 102

2. Keeping a non-zero digit and rounding ∆X such there is an accordance in the power
between X and ∆X : ∆X = 0.003× 102

3. Discarding the unreliable digits in X and rounding the result numbers.
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Figure 1.1: Significant and Unreliable digits.

∆X = 0.003× 102

Thus: X = 2.972× 102, Finally: X = (2.972± 0.003)× 102

Example: Determine the result of measurment of density D of the solid using the for-

mula D = m1−m2

m3−m2
d0. The data are given m1 = (18.55± 0.01) g; m2 = (10.02± 0.01) g;

m3 = (13.17± 0.01) g; d0 = (1.00± 0.05) g/cm3.

Calculating D

D =
m1 −m2

m3 −m2

d0 ⇒ D =
m1 −m2

m3 −m2

d0 =
18.55− 10.02

13.17− 10.02
× 1.00 = 2.7079g/cm3

Calculation ∆X: Getting natural logarithm both sides of the equation for calculating D,

we have

lnD = ln(m1 −m2)− ln(m3 −m2) + ln d0

Differentiating this equation

dD

D
=
d(m1 −m2)

(m1 −m2)
− d(m3 −m2)

(m3 −m2)
+
d(d0)

d0

After some manipulations, it reduces to

dD

D
=

[
1

m1 −m2

]
dm1 +

[
m1 −m3

(m1 −m2)(m3 −m2)

]
dm2 −

[
1

m3 −m2

]
dm3 +

d(d0)

d0

Converting to ∆D
D

∆D

D
=

∣∣∣∣ 1

m1 −m2

∣∣∣∣∆m1 +

∣∣∣∣ m1 −m3

(m1 −m2)(m3 −m2)

∣∣∣∣∆m2 +

∣∣∣∣ 1

m3 −m2

∣∣∣∣∆m3 +
∆(d0)

d0

Substituting the numbers, we have ∆D
D

= 0.059

We now calculate: ∆D = D×0.059 = 2.7079×0.059 = 0.159766g/cm3 The result received
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D = 2.7079g/cm3 (in standardized form)

∆D = 0.159766 g/cm3 ≈ 0.2 g/cm3: keeping one significant digit

Rewriting to make sure an accordance in power:D = 2.7 g/cm3

Final result: D = (2.7± 0.2) g/cm3

1.8 Drawing a diagram

In many experiments, we often need to represent the results by drawing a diagram based

on the collected data, depicting the relationship between two quantities of interest.

How to draw a diagram:

1. Make a data table.

2. Setting up the coordinates (an ordinate and an abscissa).

3. Putting units on the two axes

4. Choose proper scales

5. Drawing error rectangles whose centers are coincident with the measured values ( X

and Y ) and sides are 2∆x and 2∆y, respectively.

6. Drawing a smooth curve connecting those rectangles.
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Figure 1.2: Drawing a experimental diagram.



Chapter 2

EXPERIMENTS PHYSICS 2

2.1 Determining The Viscosity Of A Liquid

2.1.1 The purposes of the experiment

• Examine the real motion of an object in a liquid under the earth’s gravity.

• Applying the dynamic method to determine the viscosity of a liquid.

2.1.2 Theoretical backgrounds

The internal friction phenomenon and the Newton’s law of viscosity.

Consider a liquid streaming along the Ox axis with the resistance in a cylinder, as shown

in Figure 2.1. Experimental results show that velocity of liquid’s molecules varies in the z

direction, and the speed of the liquid’s molecules reduces gradually from the middle (the

symmetrical axis of the cylinder) to the sides of the cylinder. We now examine two adjacent

Figure 2.1: Velocity of liquid’s molecules varies in the z direction, and the speed of the liquid’s molecules

reduces gradually from the middle to the sides of the cylinder.

9
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layers, separated by dz, as shown in Figure 2.1(a). There is a difference in flowing speed

between the two layers. Experiments show that there is a mutual interaction between this

two layers: the faster layer drags the slower one as if there exists a frictional force between

them. This force is termed the internal friction or the viscous force, which is tangent

to the contacting surface of the two layers.

Experimental observations show that the viscous force between two fluid layers moving in

the direction perpendicular to the Oz axis has its magnitude proportional to the velocity

gradient in the z direction (dv/dz) and the contacting area of the two layers (∆A):

f = η
dv

dz
∆A (2.1)

Where η is the proportional coefficient, called viscous coefficient of the fluid. Equation

(2.1) is the mathematical form of the Newton’s law of viscosity. The SI unit of η is

N × s/m2 = kg/m× s.
To determine the viscous coefficient of a liquid we can use Stoke’s method

Stoke’s method

Consider a small sphere of radius R, that undergoes a translational motion with velocity v

in a liquid. Due to the internal friction, the sphere drags a layer of liquid near its surface

and sets this layer in motion. Experiments show that the width of this layer is about 2R/3;

Figure 2.2: There is zero speed at a distance of 2R/3 from the sphere’s surface.

those molecules in contact with the sphere’s surface have speed of v; those further away

have smaller speed and those at a distance of 2R/3 from the sphere’s surface have zero

speed (2.2). Consequently, we can find the velocity gradient in the z direction as follows:

dv

dz
=
v − 0

2
3
R

=
3

2

v

R
(2.2)

According to the Newton’s law of viscosity, in this case the internal friction is given as

follows:

f = η
dv

dz
∆S = η

3

2

v

R
4πR2 ⇒ f = 6πηRv (2.3)
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Equation 2.3 is the mathematical form of the Newton’s law. It is valid for the fluid

speed values which are not so high.

We now consider a sphere which is moving freely in a fluid. It is simultaneously acted

on by three forces: the gravity force ~P = m~v, the Archimedes force (bouyant force) ~A, and

the internal friction force ~f , as shown in Figure 2.3. When the sphere’s motion is lenearly

uniform, the three forces are in balance and in magnitude. We have

P = A+ f (2.4)

where P = mg = ρballV g; V is the sphere’s volume and ρball the sphere’s density and g the

gravity acceleration; ρliquid is the liquid’s density. Putting all in equation 2.4, we obtain

η =
ρball − ρluiquid

6πRv
(2.5)

The sphere’s volume is V = 4
3
πR3.The sphere’s speed v can be calculated if we know the

Figure 2.3: The motion of the ball under actting of three force: The gravitational force , the viscous

force and the Archimedes force

.

distance l between to markers A and B (Figure 2.3a) on the side of the tube which contains

the liquid and the time interval t it takes the sphere to move from A to B.

v =
l

t
(2.6)

Combining (2.5) and (2.6) we have

η =
2

9

(ρball − ρliquid)R2gt

l
(2.7)
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2.1.3 Instruments

(1) A tube containing a liquid

(2) Some metallic balls

(3) A vernier caliper

(4) A stopwatch

(5) A ruler

2.1.4 Procedure

Step 1: Calculating the radius R of the metallic sphere (using vernier caliper)

Step 2: Calculating the distance between A and B

Step 3: Measuring the time interval t for the sphere moves from A to B. Carry five times

step 1 to step 3. Each time calculate the value of η using equation 2.7 and the coresponding

error.

2.1.5 Reporting

(see the reporting of unit 1)
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THE REPORTING FORM OF UNIT 1

(1) Question: What is the viscous force?

(2) Experiment’s result: Finish the below data sheet and calculate the average values and

corresponding error. Given

Figure 2.4: The radius R of the ball and the time interval t for falling from A to B

.

The path of the falling: l = AB = 0.300± 0.001m

The mass density of the ball: ρball = (7.880± 0.005)× 103kg/m3

The mass density of the fluid: ρfluid = (1.260± 0.001)× 103kg/m3

The gravtitational acceleration: g = (9.86± 0.02)m/s2.

Calculating

a. The average value of the viscosity coefficient of the liquid

b. And the errors ∆R, ∆t, εη, ∆η

Writing the final results: η = η̄ ±∆η
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2.2 Measuring the speed of wave by observation of

standing wave on a straight string fixed at both

ends

2.2.1 The purpose of the experiment

This experiment is aimed at helping students to know how to measure the speed of wave

in a straight string.

2.2.2 Theoretical backgrounds

Consider a straight string of length L fixed at both ends, as shown in Figure 2.5. Standing

waves are set up in the string by the superposition of waves incident on and reflected from

the string’s ends (wave interference). Note that the ends of the string, because they are

fixed and must necessarily have zero displacement, are nodes by definition. We consider

Figure 2.5: A straight string of length L fixed at both ends

.

wave functions of two transverse sinusoidal waves having the same amplitude, frequency,

and wavelength but traveling in opposite directions in the same medium:

y1 = A sin(kx+ ωt) y2 = A sin(kx− ωt) (2.8)

where y1 represents a wave traveling to the right and y2 represents one traveling to the left.

According to the principle of superposition, adding these two functions gives the function
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of the resultant wave y:

y = y1 + y2 = (2A sin kx) cosωt (2.9)

Where x is the particle’s position on the string, measured from either end of the string, and

k is the wave number. Equation (2.9) is the wave function of a standing wave. A standing

wave, such as the one shown in Figure 2.6, is an oscillation pattern with a stationary

outline that results from the superposition of two identical waves traveling in opposite

directions. We see that Equation 2.9 describes a special kind of simple harmonic motion.

Figure 2.6: Multiflash photograph of a standing wave on a string. The time behavior of the vertical

displacement from equilibrium of an individual particle of the string is given by cos(ωt) . That is, each

particle vibrates at an angular frequency ω. The amplitude of the vertical oscillation of any particle on

the string depends on the horizontal position of the particle. Each particle vibrates within the confines of

the envelope function 2Asinkx

Every particle of the string undergoes a simple harmonic motion with the same frequency

ω (according to the cos(ωt) factor in the equation). However, the amplitude of the simple

harmonic motion of a given particle (given by the factor 2Asin(kx), the coefficient of

the cosine function) depends on the location x of the particle on the string. We need to

distinguish carefully between the amplitude A of the individual waves and the amplitude

2Asin(kx) of the resultant simple harmonic motion of the particles of the string. When a

standing wave exists, any given particle on the string vibrates within the constraints of the

envelope function 2Asin(kx). This is in contrast to the situation of a traveling sinusoidal

wave, in which all particles oscillate with the same amplitude and frequency.

The displacement of a particle of the string has a minimum value of zero when x satisfies

the condition sin(kx) = 0 that is, when Because kx = π; 2π; 3π;..., k = 2π
λ

, these values

kx give

x =
λ

2
;λ;

3λ

2
; ....;

nλ

2
n = 0, 1, 2, 3,... (2.10)
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where λ is the wavelength. These points of zero displacement are called nodes.

The particles with the greatest possible displacement from equilibrium have an amplitude

of 2A, and we define this value as the amplitude of the standing wave. The positions on the

string at which this maximum displacement occurs are called antinodes. The antinodes

are located at positions for which the coordinate x satisfies the condition sin kx = ±1 that

is, when kx = π
2
; 3π

2
;5π

2
;... Thus, the positions of the antinodes are given by

x =
λ

4
;
3λ

4
;
5λ

4
; ....;

mλ

4
m = 1, 3, 5, 7,... (2.11)

In examining Equations (2.10) and (2.11), we note the following important features of the

locations of nodes and antinodes:

The distance between two adjacent antinodes is equal to λ
2
.

The distance between two adjacent nodes is also equal to λ
2
.

The distance between a node and an adjacent antinode is λ
4
.

If both ends of the string are nodes, the length of the string will be

Figure 2.7: (a) A string of length L, fixed at both ends. The normal modes of vibration form a harmonic

series; (b) the fundamental, or first harmonic; (c) the second harmonic; (d) the third harmonic

L = n
λ

2
(2.12)

n is the number of antinodes. Because λ = v
f
, combining equation (2.11) with equation

(2.12), we have

v =
2Lf

n
(2.13)

With this experiment, frequency f is decided by a signal generator and the length L is

decided by the ruler on a testing stand. Therefore, using equation (2.13), we can find the

value of the speed of wave v.



CHAPTER 2. EXPERIMENTS PHYSICS 2 17

2.2.3 Instruments

(1) An elastic string

(2) A spring

(3) A dynamometer

(4) A vibrator

(5) A testing stand

(6) A signal generator

(7) A tripod

(8) Connecting wires

2.2.4 Procedure

Step 1: Arrange this experiment, as shown in Figure 2.8

Step 2: Adjust the frequency of the vibrator to set up a stable standing wave on the string.

Read this value of the frequency on the signal generator and count the number of antinodes

on the string.

Step 3: Continue to adjust frequency to other values for other stable standing waves on

the string and count the number of antinodes for each value of frequency.

Figure 2.8: (a) A string of length L, fixed at both ends. The normal modes of vibration form a harmonic

series; (b) the fundamental, or first harmonic; (c) the second harmonic; (d) the third harmonic

Note: get 4 values of frequency and 4 corresponging values of number of antinodes.
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2.2.5 Reporting

(see the reporting form of unit 2)
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THE REPORTING FORM OF UNIT 2

1. Give brief definitions of standing wave, node and antinode.

2. Give conditions to set up a standing wave on a string fixed at both ends.

3. Does the speed of wave on the string depend on the frequency of the vibrator? If

increasing the tension of the string, how is the speed of wave change? How do you do to

verify it by this experiment?

4. Are the vibrating amplitudes of particles on the string the same? If not, how do these

amplitudes vary?

5. Calculate the speed of wave v1, v2, v3, v4 then find the average value ∆v1, ∆v2, ∆v3,

∆v4 and ∆v. Put these values on the below table.

6. The speed of wave on the string: v = v ±∆v

Figure 2.9: List of these values
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2.3 Determining the moment of inertia

2.3.1 The purposes of the experiment

Determine the moment of inertia of the solid.

2.3.2 Theoretical backgrounds

Moment of inertia I of an object about an axis is defined as

I = Σn
i=1mir

2
i (2.14)

where mi is the mass of the i-th particle and ri the distance from it to the axis. The

moment of inertia is defined with respect to an axis of rotation. For example, the moment

of inertia of a circular disk spinning about an axis through its center and perpendicular to

the plane of the disk differs from the moment of inertia of a disk spinning about an axis

through its center in the plane of the disk.

The moment of inertia of an object depends on the mass of the object, and on how

this mass is distributed with respect to the axis of rotation. The farther the bulk of the

mass is from the axis of rotation, the greater is the rotational inertia (moment of inertia)

of the object. The dimension of moment of inertia is mr2 and its SI unit is kg ×m2. We

can calculate the moment of inertia of an object more easily by assuming it is divided into

many small volume elements, each of mass ∆mi. We can then rewrite the expression for I

in terms of ∆mi.

I = lim
∆m→0

∑
i

r2
i∆mi =

∫
r2dm (2.15)

Since ρ = m/V (volumetric mass density), for the small volume segment ρ = dm/dV or

dm = ρdV , then equation (2.15) becomes

I =

∫
r2dm =

∫
r2ρdV (2.16)

If ρ is constant, the integral can be evaluated with known geometry, otherwise its variation

with position must be known.

Below are moments of inertia of some common ojects about their symmetrical axes

which contain their centers of mass.
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Figure 2.10: Moments of inertia of some common ojects about their symmetrical axes which contain

their centers of mass
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In classical mechanics, moment of inertia, also called mass moment of inertia, rota-

tional inertia, polar moment of inertia of mass, or the angular mass is a measure

of an object’s resistance to changes to its rotation. It is the inertia of a rotating body

with respect to its rotation. The moment of inertia plays much the same role in rotational

dynamics as mass does in linear dynamics, describing the relationship between angular

momentum and angular velocity, torque and angular acceleration, and several other quan-

tities. The symbol I and sometimes J are usually used to refer to the moment of inertia

or polar moment of inertia.

In this experiment, we determine moment of inertia by following mechanical system

(see the figure 2.11). We assume that, the mass of the string and the frictions is necgleted.

Applying the equation of Newton’s second law for the hanging object, we have

P − T = ma (2.17)

Here, a and m are the linear acceleration and the mass of the hanging object, respectively.

T is tensional force and P is the gravitational force. And, from the equation of rotational

dynamics, we obtain

TR = Iγ (2.18)

Where, R and γ are the radius and the angular acceleration of pulley, respectively. The

relationship between a and are given by

γ =
a

R
(2.19)

Putting (2.19) into (2.18) and after that combining (2.17), we obtain

I =
m(g − a)R2

a
(2.20)

Equation (2.20) show that, moment of inertia I value is determined when you know the

value of accerlation a.

2.3.3 Instruments

(1) A hanging object (mass of m, shape of disk)

(2) A pulley (radius of R)

(3) Infrared interface (A’ and B’

(4) Solid cylinder

(5) Cylinderical shell

(6) Solid sphere
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(7) Switch box

(8) Electromagnetic

(9) A tripod

(10) A electronic time mea-suring device

(11) Connecting wires

Figure 2.11: The dropping time interval of object (1) is determined by the device (10)

2.3.4 Procedure

Step 1: Attch the connecting head of the above infrared interface (A’) to jack A and of the

below infrared interface (B’) to jack B. A and B are on the time-clock (A electronic time

mea-suring device). Connecting one end of switch box to electromagnetic and another to

time-clock. Adjust the control knob on the time-clock to mode A↔ B and the accuracy to

1/1000 second. Adjust the screws of the tripod so that the direction of plumb-line intersects

the beam of rays of the above infrared interface. The above infrared interface is under the

electromagnetic. The above and below infrared interface (A’ and B’) are separated by a

distance 40cm. (A’B’ = 40cm)

Step 2: Rotate the pulley to move hanging object to the position of the electromagnetic.
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Note that, the lower surface of the hanging object and the beam of rays of the above

infrared interface (A’) are same high.

Step 3: Press the switch on the switch box and get the value of ∆t which is the time interval

for falling of hanging object from A’ to B’. Calculate the value a, linear acceleration.

Step 4: Use the equation (2.20) to calculate Ipulley, the moment of inertia of pulley.

Step 5: Now, put the solid cylinder on the pulley and find the moment of inertia of system

I (solid cylinder and pulley). After that, we find the moment of inertia of solid cylinder

Isolidcylinder by

Isolidcylinder = I − Ipulley (2.21)

Repeat these above steps 5 times and put these values on the table 3.1 (see the reporting

form of unit 3).
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THE REPORTING FORM OF UNIT 3

(1) Question: Write the formula to calculate the value of linear acceleration, a, in terms

∆t and S (here, S = A’B’)

(2) Experiment’s result: Finish the below data sheets and calculate the average values and

corresponding errors.

Given:

The mass of the hanging object: m = 0.0315± 0.0001kg

The radius of the pulley: R = 0.0425± 0.001m

The gravitational acceleration: g = 9.860± 0.001m/s2

Calculate Ipulley, Ipulley, ∆Ipulley

Figure 2.12: Moment inertia of the pulley
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Figure 2.13: Moment of inertia of the system (solid cylinder + pulley)

Calculate I, I, ∆I

Calculate Isolidcylinder, the moment of inertia of the solid cylinder, with

Isolidcylinder = I − Ipulley and ∆Isolidcylinder = ∆I + ∆Ipulley
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2.4 Determining the period and gravitational acceler-

ation by simple pendulum

2.4.1 The purposes of the experiment

• Understanding the experimental methods to determine the period of simple pendu-

lum.

• Determining the gravitational acceleration from the value of period measured.

2.4.2 Theoretical backgrounds

The simple pendulum is another mechanical system that exhibits periodic motion.

It consists of a particle-like bob of mass m suspended by a light string of length L that is

fixed at the upper end, as shown in Figure 2.13. The motion occurs in the vertical plane

and is driven by the force of gravity. We shall show that, provided the angle ? is small

(less than about 10o), the motion is that of a simple harmonic oscillator. The forces

Figure 2.14: When θ is small, a simple pendulum oscillates in simple harmonic motion about the equil-

ibrium position θ = 0. The restoring force is mgsinθ, the component of the gravitational force tangent to

the arc.

acting on the bob are the force ~T exerted by the string and the gravitational force m~g.

The tangential component of the gravitational force, mgsinθ, always acts toward η = 0,

opposite the displacement. Therefore, the tangential force is a restoring force, and we can

apply Newton’second law for motion in the tangential direction:∑
Ft = −mgsinθ = m

d2s

dt2
(2.22)
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where s is the bobs displacement measured along the arc and the minus sign indicates that

the tangential force acts toward the equilibrium (vertical) position. Because s = Lθ and L

is constant, this equation reduces to

d2θ

dt2
= − g

L
sinθ (2.23)

we assume that θ is small, we can use the approximation sinθ ≈ θ; thus the equation of

motion for the simple penddulum becomes

d2θ

dt2
= − g

L
θ = ω2θ (2.24)

Equation 2.24 is second order linear differential equation and the solution of its is given by

θ = θmaxcos(ωt+ ϕ) (2.25)

where θmax the maximum angular displacement and the angular frequency ω is

ω =

√
g

L
(2.26)

The period of the oscillation is

T =
2π

ω
= 2π

L

g
(2.27)

We also see that the period and frequency of a simple pendulum depend only on the length

of the string and the acceleration due to gravity. Because the period is independent of the

mass, we conclude that all simple pendulums that are of equal length and are at the same

location (so that g is constant) oscillate with the same period.

The simple pendulum can be used as a timekeeper because its period depends only

on its length and the local value of g. It is also a convenient device for making precise

measurements of the free-fall acceleration. In fact, we can find the value of gravitational

acceleration g if we measure the value of the period T

g = 4π2 L

T 2
(2.28)

2.4.3 Instruments

(1) A bracket has the height of 1m.

(2) A coil of thread

(3) A electronic time measuring device.

(4) A infrared interface

(5) A simple pendulum has the length of 0.4m.
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Figure 2.15: The device (3) determine time interval of oscillation of the hanging object.

2.4.4 Procedure

Step 1: Make a simple pendulum: The string has the leghth of 0.4m and θmax < 10o.

Note that, you have to adjust the srews on the tripod so that the direction of the string is

vertical when the hanging object is at equilibrium point.

Step 2: Measure the time interval ∆t, time interval of 20 periods.

Step 3: Calculate the period T and gravitational acceleration g. (see the reporting form of

unit 4)
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THE REPORTING FORM OF UNIT 4

(1) Question: If you replace the hanging object of simple pedulum, will the period be

changed to other value? If not, explain its!

(2) Experiment’s result: Finish the below data sheet and calculate the average values and

corresponding error.

Given

The length of the simple pendulum: L = 0.400± 0.001m

The angular amplitude: θmax < 10o

Pi number: π = 3.1416± 0.0001

The intrusmental error of the electronic time measuring device: 0.01second

The gravitational acceleration: g = ḡ ±∆g

Figure 2.16: The value of time interval and corresponding gravitational acceleration

.
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